Jump to main content
Jump to site search


Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic

Author affiliations

Abstract

We investigated the impact of aging-induced structural modifications of carbonate green rust (GR), a mixed valent Fe(II,III) (hydr)oxide with a high oxyanion sorption affinity, on the partitioning and binding mode of arsenic (As). Suspensions of carbonate GR were produced in the presence of As(V) or As(III) (i.e. co-precipitated with As(III) or As(V)) and aged in anoxic and oxic conditions for up to a year. We tracked aqueous As over time and characterized the solid phase by X-ray absorption spectroscopy (XAS). In experiments with initial As(V) (4500 μg L−1, As/Fe = 2 mol%), the fresh GR suspension sorbed >99% of the initial As, resulting in approximately 14 ± 8 μg L−1 residual dissolved As. Anoxic aging of the As(V)-laden GR for a month increased aqueous As to >60 μg L−1, which was coupled to an increase in GR structural order revealed by Fe K-edge XAS. Further anoxic aging up to a year transformed As(V)-laden GR into magnetite and decreased significantly the aqueous As to <2 μg L−1. The As binding mode was also modified during GR transformation to magnetite from sorption to GR particle edges to As substitution for tetrahedral Fe in the magnetite structure. These GR structural modifications altered the ratio of As partitioning to the solid (μg As/mg Fe) and liquid (μg As per L) phase from 2.0 to 0.4 to 14 L mg−1 for the fresh, month, and year aged suspensions, respectively. Similar trends in GR transformation and As partitioning during anoxic aging were observed for As(III)-laden suspensions, but occurred on more rapid timescales: As(III)-laden GR transformed to magnetite after a day of anoxic aging. In oxic aging experiments, rapid GR oxidation by dissolved oxygen to Fe(III) precipitates required only an hour for both As(V) and As(III) experiments, with lepidocrocite favored in As(V) experiments and hydrous ferric oxide favored in As(III) experiments. Aqueous As during GR oxidation decreased to <10 μg L−1 for both As(V) and As(III) series. Knowledge of this interdependence between GR aging products and oxyanion fate improves biogeochemical models of contaminant and nutrient dynamics during Fe cycling and can be used to design more effective arsenic remediation strategies that rely on arsenic sorption to GR.

Graphical abstract: Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic

Back to tab navigation

Supplementary files

Publication details

The article was received on 31 May 2019, accepted on 19 Jul 2019 and first published on 22 Jul 2019


Article type: Paper
DOI: 10.1039/C9EM00267G
Environ. Sci.: Processes Impacts, 2019, Advance Article

  •   Request permissions

    Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic

    C. M. van Genuchten, T. Behrends and K. Dideriksen, Environ. Sci.: Processes Impacts, 2019, Advance Article , DOI: 10.1039/C9EM00267G

Search articles by author

Spotlight

Advertisements