Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 12, 2019
Previous Article Next Article

Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions

Author affiliations

Abstract

The regulation of catalytic activity in the oxygen reduction reaction (ORR) is significant to the development of metal–air batteries and other oxygen involving energy conversion devices. Herein, we propose an atomic interface strategy to construct a single atom copper catalyst (denoted as Cu-SA/SNC) which exhibits enhanced ORR activity with a half-wave potential of 0.893 V vs. RHE in alkaline media. Moreover, synchrotron-radiation-based X-ray absorption fine structure (XAFS) investigations together with density functional theory (DFT) calculations reveal that the isolated bond-shrinking low-valence Cu (+1)–N4–C8S2 atomic interface moiety serves as an active site during the ORR process, and the synergistic mechanism between the Cu species and the carbon matrix at the atomic interface plays a critical role in boosting the ORR efficiency, by adjusting the reaction free energy of intermediate adsorption. This atomic interface concept may provide an alternative methodology for the rational design of advanced oxygen electrode materials and new probability to improve their catalytic performance.

Graphical abstract: Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions

Back to tab navigation

Supplementary files

Article information


Submitted
13 Sep 2019
Accepted
11 Nov 2019
First published
15 Nov 2019

Energy Environ. Sci., 2019,12, 3508-3514
Article type
Communication

Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions

Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun, H. Li, J. Dong, J. Zhou, Z. Li, Y. Wang, R. Cao, R. Sarangi, Z. Yang, D. Wang, J. Zhang and Y. Li, Energy Environ. Sci., 2019, 12, 3508
DOI: 10.1039/C9EE02974E

Social activity

Search articles by author

Spotlight

Advertisements