Issue 3, 2019

A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells

Abstract

The operational stability of organic solar cells (OSCs) is the essential barrier to commercialization. Compared to thermally-induced degradation, photo-stability of OSCs is far away from being resolved. Here, we demonstrate that the thermal- and photo-degradation of metastable bulk-heterojunction OSCs are governed by the same mechanism. Understanding the fundamental principles behind this mechanism is of significant importance to fully address the instability issues. Structural incompatibilities between the donor and acceptor molecules are identified as the main origin of the instability. Further, we introduce a top-down approach mainly based on their melting temperature and interaction parameters to rationally screen molecular phase stabilizers from a database with more than 10 000 small molecules. Eventually, five chemicals were selected to validate our concept and tested in unstable organic solar cells. 1,4-Piperazine, which possesses a high melting point, good miscibility with polymers and the capability of forming inter-molecular hydrogen bonding, can indeed stabilize the mixed amorphous phases, leading to significantly improved stability of otherwise metastable OSCs.

Graphical abstract: A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
31 Dec 2018
Accepted
18 Feb 2019
First published
19 Feb 2019

Energy Environ. Sci., 2019,12, 1078-1087

A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells

C. Zhang, T. Heumueller, S. Leon, W. Gruber, K. Burlafinger, X. Tang, J. D. Perea, I. Wabra, A. Hirsch, T. Unruh, N. Li and C. J. Brabec, Energy Environ. Sci., 2019, 12, 1078 DOI: 10.1039/C8EE03780A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements