Jump to main content
Jump to site search

Issue 1, 2019
Previous Article Next Article

Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency

Author affiliations

Abstract

We demonstrate exceptional performance for steam electrolysis at intermediate temperatures (500–650 °C) using protonic ceramic electrolyte cells comprised of the proton-permeable, high-activity mixed conductor PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) as the air electrode, the highly proton-conductive and chemically stable perovskite oxide BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411) as the electrolyte, and a composite of Ni–BZCYYb4411 as the fuel electrode. Cells constructed from this material set have been shown previously to function efficiently in fuel cell mode. We demonstrate here reversible operation, enabling hydrogen production when excess electricity is available and immediate electricity generation from stored hydrogen when power demand is high. The cells are stable under cyclic operation and also under prolonged continuous operation in electrolysis mode, undergoing minimal loss in electrochemical characteristics after 500 h at 550 °C. Microstructurally optimized cells yield a remarkable current density of −1.80 A cm−2 at 600 °C and an operating voltage of 1.3 V, of which, based on an electrochemically deduced faradaic efficiency of 76%, −1.37 A cm−2 contributes to useful hydrogen.

Graphical abstract: Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency

Back to tab navigation

Supplementary files

Article information


Submitted
30 Sep 2018
Accepted
13 Dec 2018
First published
13 Dec 2018

Energy Environ. Sci., 2019,12, 206-215
Article type
Paper
Author version available

Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency

S. Choi, T. C. Davenport and S. M. Haile, Energy Environ. Sci., 2019, 12, 206
DOI: 10.1039/C8EE02865F

Social activity

Search articles by author

Spotlight

Advertisements