Issue 6, 2019

Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage

Abstract

A zinc–iodine single flow battery (ZISFB) with super high energy density, efficiency and stability was designed and presented for the first time. In this design, an electrolyte with very high concentration (7.5 M KI and 3.75 M ZnBr2) was sealed at the positive side. Thanks to the high solubility of KI, it fully meets the areal capacity of zinc deposition on the negative side. Most importantly, the ZISFB can be charged to nearly 100% state of charge (SOC) or I can be fully charged to solid state I2 so as to get a maximum energy density. Besides, the blockage of the pump and pipelines on the positive side caused by solid I2 can be inhibited due to the avoidance of electrolyte circulation. Besides, the employment of a highly composite porous polyolefin ion conducting membrane with a super thin Nafion layer effectively improved the membrane selectivity. As a result, the ZISFB demonstrated a CE of 97% and an EE of 81% at a current density of 40 mA cm−2, and the battery could continuously run for more than 500 cycles. The battery demonstrated a high energy density of 205 W h L−1 (theoretical energy density is about 240 W h L−1) (7.5 M KI and 3.75 M ZnBr2 as the electrolyte), which is the highest cycling energy density ever reported. With super high energy density, long cycling life, and a simple structure, a ZISFB becomes a very promising candidate for large scale energy storage and even for power batteries.

Graphical abstract: Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage

Supplementary files

Article information

Article type
Communication
Submitted
27 Sep 2018
Accepted
22 Jan 2019
First published
23 Jan 2019

Energy Environ. Sci., 2019,12, 1834-1839

Highly stable zinc–iodine single flow batteries with super high energy density for stationary energy storage

C. Xie, Y. Liu, W. Lu, H. Zhang and X. Li, Energy Environ. Sci., 2019, 12, 1834 DOI: 10.1039/C8EE02825G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements