Jump to main content
Jump to site search

Issue 40, 2019
Previous Article Next Article

Unsymmetrical nonplanar ‘push–pull’ β-octasubstituted porphyrins: facile synthesis, structural, photophysical and electrochemical redox properties

Author affiliations

Abstract

Mixed substitution at the β-position of porphyrins influences their photophysical and electrochemical redox properties. Two new series of asymmetrically mixed β-octasubstituted porphyrins viz. MTPP(Ph)2Br5X (X = NO2 or Br and M = 2H, Co(II), Ni(II), Cu(II), and Zn(II)) have been synthesized and characterized by various spectroscopic techniques. The single crystal X-ray structure of H2TPP(NO2)(Ph)2Br5 showed a nonplanar saddle shape conformation of the macrocyclic core. Furthermore, the fully optimized geometries confirmed the saddle shape conformation of H2TPP(Ph)2Br5X (X = NO2 or Br). Electronic spectra revealed a significant bathochromic shift by appending both electron donor and acceptor substituents at the β-position of the meso-tetraphenylporphyrin skeleton, which reflects the following order H2TPP < H2TPP(NO2) < H2TPP(NO2)(Ph)2 < H2TPP(Ph)2Br6 < H2TPP(NO2)(Ph)2Br5. H2TPP(Ph)2Br5X (X = NO2 or Br) exhibited a significant bathochromic shift (Δλmax = 53–61 nm) in the Soret band and (Δλmax = 90–95 nm) in the longest wavelength Qx(0,0) band as compared to H2TPP. Nonplanar conformations and electron withdrawing β-substituents induce higher protonation and deprotonation constants for H2TPP(NO2)(Ph)2Br5 and H2TPP(Ph)2Br6 as compared to precursor porphyrins viz. H2TPP, H2TPP(NO2) and H2TPP(NO2)(Ph)2. The electronic spectral properties and redox potentials of MTPP(Ph)2Br5X (X = NO2 or Br and M = 2H, Co, Ni, Cu and Zn) are affected by β-substituents at the periphery of the porphyrin core. Redox tunability was achieved by appending push–pull substituents at the β-position of the MTPP (M = 2H, CoII, NiII, CuII, and ZnII) skeleton of the macrocycle. CuTPP(Ph)2Br6 and CuTPP(NO2)(Ph)2Br5 exhibited a dramatically reduced HOMO–LUMO gap with a difference of 0.55 V and 0.62 V, respectively as compared to CuTPP due to the push–pull effect of β-substituents and nonplanarity of the porphyrin core.

Graphical abstract: Unsymmetrical nonplanar ‘push–pull’ β-octasubstituted porphyrins: facile synthesis, structural, photophysical and electrochemical redox properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jul 2019, accepted on 03 Sep 2019 and first published on 03 Sep 2019


Article type: Paper
DOI: 10.1039/C9DT02792K
Dalton Trans., 2019,48, 15002-15011

  •   Request permissions

    Unsymmetrical nonplanar ‘push–pull’ β-octasubstituted porphyrins: facile synthesis, structural, photophysical and electrochemical redox properties

    P. Rathi, R. Butcher and M. Sankar, Dalton Trans., 2019, 48, 15002
    DOI: 10.1039/C9DT02792K

Search articles by author

Spotlight

Advertisements