Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2019
Previous Article Next Article

Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering

Author affiliations

Abstract

Iron, the most abundant transition metal ion in humans, participates in the biosynthesis, translocation, signal transduction, and transformation of nitric oxide through its encapsulation in the form of heme, [Fe–S], and [Fe(NO)2] cofactors within a variety of enzymes and proteins. After the review on nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) for the biosynthesis and detection of NO, in this report, we discuss the natural utilization of the [Fe(NO)2] motif for translocation of endogenous NO and the translational development of synthetic dinitrosyl iron complexes (DNICs) for biomedical applications. A mechanistic study of NO-release and NO-transfer reactivity of structure-characterized DNICs promoted the discovery of cell-penetrating and in vivo NO-delivery reactivity for treatment of cancer and wound healing in diabetes. Beyond activation of sGC and vasodilation, phase I/II clinical trials of glutathione-bound DNICs (Oxacom®) against hypertension encourage bioinorganic engineering of DNICs into scaffolds for tissue regeneration and repair relying on anti-bacterial, anti-inflammation, cytoprotective, and proliferative effects of NO.

Graphical abstract: Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering

Back to tab navigation

Article information


Submitted
21 Feb 2019
Accepted
01 Apr 2019
First published
02 Apr 2019

Dalton Trans., 2019,48, 9431-9453
Article type
Perspective

Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering

H. Hsiao, C. Chung, J. H. Santos, O. B. Villaflores and T. Lu, Dalton Trans., 2019, 48, 9431
DOI: 10.1039/C9DT00777F

Social activity

Search articles by author

Spotlight

Advertisements