Jump to main content
Jump to site search

Issue 15, 2019
Previous Article Next Article

Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines

Author affiliations

Abstract

The interactions between pendant amines in the second coordination sphere and ligands in the first coordination sphere are important for understanding the structures and reactivity of complexes containing PR2NR′2 ligands, which have been shown to be highly active H2 oxidation/production catalysts. A series of [Fe(PPh2NBn2)2(X)(Y)]n+ complexes have been prepared and structurally characterized. These complexes have two different ligands with which the pendant amines of the diphosphine ligand can interact. The solid state structure of cis-Fe(PPh2NBn2)2Cl2 reveals that the six-membered rings adjacent to the P atoms are in a boat confirmation, resulting in close N⋯P distances that suggests the P atoms have a greater affinity for the lone pair of electrons on the N atom than chloride ligands. Similarly, boat conformations are observed for both rings adjacent to the hydride ligands of trans-[HFe(PPh2NBn2)2(CH3CN)]+ and trans-HFe(PPh2NBn2)2Cl, resulting in short N⋯H distances. Spectroscopic and computational studies of trans-[HFe(PPh2NBn2)2(CO)]+, trans-[HFe(PPh2NBn2)(PPh2NBn2H)(CO)]2+, and trans-[HFe(PPh2NBn2)2(H2)]+ indicate the complexes are more stable when the pendant amines in boat conformations are adjacent to the hydride ligand. These data suggest an attractor ordering of H > CO > H2 > PR3 > Cl ∼ CH3CN.

Graphical abstract: Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Feb 2019, accepted on 12 Mar 2019 and first published on 15 Mar 2019


Article type: Paper
DOI: 10.1039/C9DT00708C
Citation: Dalton Trans., 2019,48, 4867-4878

  •   Request permissions

    Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines

    Q. Liao, T. Liu, S. I. Johnson, C. M. Klug, E. S. Wiedner, R. Morris Bullock and D. L. DuBois, Dalton Trans., 2019, 48, 4867
    DOI: 10.1039/C9DT00708C

Search articles by author

Spotlight

Advertisements