Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2019
Previous Article Next Article

Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer

Author affiliations

Abstract

Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.

Graphical abstract: Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer

Back to tab navigation

Article information


Submitted
31 Jan 2019
Accepted
05 Jun 2019
First published
05 Jun 2019

Dalton Trans., 2019,48, 9490-9515
Article type
Perspective

Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer

S. Palanisamy and Y. Wang, Dalton Trans., 2019, 48, 9490
DOI: 10.1039/C9DT00459A

Social activity

Search articles by author

Spotlight

Advertisements