Jump to main content
Jump to site search


Heteroatom substitution effects in spin crossover dinuclear complexes

Author affiliations

Abstract

We probe the effect of heteroatom substitution on the spin crossover (SCO) properties of dinuclear materials of the type [Fe2(NCX)4(R-trz)5]·S (X = S, Se; S = solvent; R-trz = (E)-N-(furan-2-ylmethylene)-4H-1,2,4-triazol-4-amine (furtrz); (E)-N-(thiophen-2-ylmethylene)-4H-1,2,4-triazole-4-amine (thtrz)). For the furtrz family ([Fe2(NCX)4(furtrz)5]·furtrz·MeOH; X = S (furtrz-S) and X = Se (furtrz-Se)) gradual and incomplete one-step SCO transitions are observed (furtrz-S (T1/2 = 172 K) and furtrz-Se (T1/2 = 205 K)) and a structural evolution from [HS–HS] to [HS–LS] per dinuclear species. Contrasting this, within the thtrz family ([Fe2(NCX)4(thtrz)5]·4MeOH; X = S (thtrz-S) and X = Se (thtrz-Se)) more varied SCO transitions are observed, with thtrz-S being SCO-inactive (high spin) and thtrz-Se showing a rare complete two-step SCO transition (T1/2(1,2) = 170, 200 K) in which the FeII sites transition from [HS–HS] to [HS–LS] to [LS–LS] per dinuclear unit with no long range ordering of spin-states at the intermediate plateau. Detailed structure–function analyses have been conducted within this growing dinuclear family to rationalise these diverse spin-switching properties.

Graphical abstract: Heteroatom substitution effects in spin crossover dinuclear complexes

Back to tab navigation

Publication details

The article was received on 20 Dec 2018, accepted on 11 Mar 2019 and first published on 18 Mar 2019


Article type: Paper
DOI: 10.1039/C8DT05010D
Citation: Dalton Trans., 2019, Advance Article

  •   Request permissions

    Heteroatom substitution effects in spin crossover dinuclear complexes

    S. Zaiter, C. Kirk, M. Taylor, Y. M. Klein, C. E. Housecroft, N. F. Sciortino, J. E. Clements, R. I. Cooper, C. J. Kepert and S. M. Neville, Dalton Trans., 2019, Advance Article , DOI: 10.1039/C8DT05010D

Search articles by author

Spotlight

Advertisements