Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2019
Previous Article Next Article

Flux crystal growth: a versatile technique to reveal the crystal chemistry of complex uranium oxides

Author affiliations

Abstract

This frontier article focuses on the use of flux crystal growth for the preparation of new actinide containing materials, reviews the history of flux crystal growth of uranium containing phases, and highlights the recent advances in the field. Specifically, we discuss how recent developments in f-element materials, fueled by accelerated materials discovery via crystal growth, have led to the synthesis and characterization of new families of complex uranium containing oxides, namely alkali/alkaline uranates, oxychlorides, oxychalcogenides, tellurites, molybdates, tungstates, chromates, phosphates, arsenates, vanadates, niobates, silicates, germanates, and borates. An overview of flux crystal growth is presented and specific crystal growth approaches are described with an emphasis on how and why they – versus some other method – are used and how they enable the preparation of specific classes of new materials.

Graphical abstract: Flux crystal growth: a versatile technique to reveal the crystal chemistry of complex uranium oxides

Back to tab navigation

Supplementary files

Article information


Submitted
26 Nov 2018
Accepted
20 Jan 2019
First published
21 Jan 2019

Dalton Trans., 2019,48, 3162-3181
Article type
Frontier
Author version available

Flux crystal growth: a versatile technique to reveal the crystal chemistry of complex uranium oxides

C. A. Juillerat, V. V. Klepov, G. Morrison, K. A. Pace and H. zur Loye, Dalton Trans., 2019, 48, 3162
DOI: 10.1039/C8DT04675A

Social activity

Search articles by author

Spotlight

Advertisements