Issue 4, 2019

Thioether sulfur-bound [Cu2] complexes showing catechol oxidase activity and DNA cleaving behaviour

Abstract

Rational ligand design approaches allowed {Cu2(μ-OH/OMe)} cores to be accommodated within μ-phenoxido bis(tetradentate) and μ-phenoxido bis(tridentate) ligands having thioether donors. The complexes [Cu2(μ-H2L1)(μ-OH)](ClO4)2·2H2O (1), [Cu2(μ-L2)(μ-OH)(OH2)](ClO4)2 (2a) and [Cu2(μ-L2)(μ-OCH3)(OH2)](ClO4)2 (2b) were obtained from an N2O3S2 donor set bearing the H3L1 ligand (2,6-bis-[{2-(2-hydroxyethylthio)ethylimino}methyl]-4-methylphenol) and N2OS2 donor set containing the HL2 ligand (4-methyl-2,6-bis-[{2-(methylthio)phenylimino}methyl]phenol) without showing double phenoxido bridging or any type of preformed inter-fragment aggregation. Previously, we showed that H3L (2,6-bis[((2-(2-hydroxyethoxy)ethyl)imino)methyl]-4-methylphenol), the ether analogue of H3L1, in the presence of carboxylate anions, was responsible for the self-aggregation of preformed {Cu2} fragments and gave two types of [Cu4] complexes comprising [Cu4O] and [Cu4(OH)2] cores (T. S. Mahapatra, A. Bauzá, D. Dutta, S. Mishra, A. Frontera and D. Ray, ChemistrySelect, 2016, 1, 64–74). The molecular structures of 1, 2a and 2b were determined via single crystal X-ray diffraction and solution studies, which indicated the presence of [Cu2] species. This was further confirmed via UV-vis spectroscopy and HRMS analysis. The synthesized complexes were screened for their potential as catalysts for the catalytic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBCH2). A change in the mechanism of catalytic oxidation was observed with a change in the ligand backbone. All three complexes also showed DNA binding properties, which were further substantiated via molecular docking studies. Their DNA binding affinities were quantitatively ascertained using their intrinsic binding constant, Kb, values which were found to be 4.2 × 104, 5.6 × 104 and 4.8 × 104 M−1, respectively. Furthermore, the complexes displayed efficient DNA cleavage behaviour with pBR322 and the oxidative path was established in presence of ROS, singlet oxygen, 1O2, and the superoxide anion, O2·.

Graphical abstract: Thioether sulfur-bound [Cu2] complexes showing catechol oxidase activity and DNA cleaving behaviour

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2018
Accepted
13 Dec 2018
First published
13 Dec 2018

Dalton Trans., 2019,48, 1292-1313

Thioether sulfur-bound [Cu2] complexes showing catechol oxidase activity and DNA cleaving behaviour

M. Das, Z. Afsan, D. Basak, F. Arjmand and D. Ray, Dalton Trans., 2019, 48, 1292 DOI: 10.1039/C8DT04183K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements