Jump to main content
Jump to site search


Synthesis and characterisation of homoleptic 2,9-diaryl-1,10-phenanthroline copper(I) complexes: influencing selectivity in photoredox-catalysed atom-transfer radical addition reactions

Author affiliations

Abstract

This report details the synthesis and characterisation of eight homoleptic bis(2,9-diaryl-1,10-phenanthroline)copper(I) complexes, seven of which are previously unreported {aryl = p-CF3C6H4, p-FC6H4, m,p-(OMe)2C6H3, o,p-(OMe)2C6H3, p-OMe-m,m-Me2C6H2, p-OMe-m,m-(t-Bu)2C6H2, 9,9-dimethyl-9H-fluoren-2-yl, 4-(9H-carbazol-9-yl)phenyl)}. Where possible the solid state, photophysical and electrochemical properties of these complexes were studied. In order to obtain insights into the influence of the intrinsic features of these copper(I) complexes on their reactivity in visible light-mediated photoredox catalysis, their capacity to promote a known atom-transfer radical addition process was evaluated. This specific transformation was identified as a suitable model system as it is reported to proceed via a mechanism consistent with the inner-sphere reactivity enabled by coordinatively unsaturated phenanthroline-based copper(I) species.

Graphical abstract: Synthesis and characterisation of homoleptic 2,9-diaryl-1,10-phenanthroline copper(i) complexes: influencing selectivity in photoredox-catalysed atom-transfer radical addition reactions

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Oct 2018, accepted on 13 Feb 2019 and first published on 22 Feb 2019


Article type: Paper
DOI: 10.1039/C8DT04116D
Citation: Dalton Trans., 2019, Advance Article

  •   Request permissions

    Synthesis and characterisation of homoleptic 2,9-diaryl-1,10-phenanthroline copper(I) complexes: influencing selectivity in photoredox-catalysed atom-transfer radical addition reactions

    T. P. Nicholls, C. Caporale, M. Massi, M. G. Gardiner and A. C. Bissember, Dalton Trans., 2019, Advance Article , DOI: 10.1039/C8DT04116D

Search articles by author

Spotlight

Advertisements