Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 26, 2019
Previous Article Next Article

Unveiling reactive metal sites in a Pd pincer MOF: insights into Lewis acid and pore selective catalysis

Author affiliations

Abstract

A porous Zr metal–organic framework, 1-PdBF4 [Zr6O4(OH)4(OAc)2.4{(PNNNP)Pd(MeCN)}2.4(BF4)2.4; PNNNP = 2,6-(HNPAr2)2C5H3N; Ar = p-C6H4CO2], has been synthesized via postsynthetic oxidative I/BF4 ligand exchange using NOBF4. 1-PdBF4 enjoys markedly superior catalytic activity and recyclability to its trifluoracetate-exchanged analogue, 1-PdTFA, for the intramolecular cyclization of o-alkynyl anilines and the carbonyl–ene cyclization of citronellal. Moreover, 1-PdBF4 demonstrates a rare example of pore selective catalysis for the cyclization of 2-ethynyl aniline.

Graphical abstract: Unveiling reactive metal sites in a Pd pincer MOF: insights into Lewis acid and pore selective catalysis

Back to tab navigation

Supplementary files

Article information


Submitted
19 Sep 2018
Accepted
13 Nov 2018
First published
13 Nov 2018

Dalton Trans., 2019,48, 9588-9595
Article type
Paper

Unveiling reactive metal sites in a Pd pincer MOF: insights into Lewis acid and pore selective catalysis

B. R. Reiner, A. A. Kassie and C. R. Wade, Dalton Trans., 2019, 48, 9588
DOI: 10.1039/C8DT03801E

Social activity

Search articles by author

Spotlight

Advertisements