Jump to main content
Jump to site search


Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance

Author affiliations

Abstract

Plasmon Ag and CdS quantum dot co-decorated three-dimensional (3D) hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunction photocatalysts are synthesized by oil bath, photoreduction and hydrothermal processes. The formation of a tandem heterojunction structure facilitates the migration and spatial separation of photogenerated electron–hole pairs. Plasmon Ag nanoparticles can generate hot electrons to enhance the photothermal performance due to the surface plasmon resonance (SPR) effect. The unique 3D hierarchical ball-flower-like Bi5O7I nanosheets can provide a number of surface active sites and allow incident light to be reflected multiple times within the Bi5O7I nanosheets, thus improving the light utilization. Under the protection of Bi5O7I nanosheets, CdS quantum dots which are deposited by a hydrothermal strategy can effectively avoid photocorrosion. In addition, the introduction of Ag nanoparticles and CdS quantum dots extends the photoresponse to the near infrared (NIR) region. The photocatalytic degradation rate of Bi5O7I/Ag/CdS composites with a CdS content of 5.76 wt% exhibits the best photocatalytic activity, which is several times higher than that of pristine Bi5O7I. The photocatalytic hydrogen evolution is about 10 times higher than that over Bi5O7I nanosheets. Moreover, the photothermal efficiency of Bi5O7I/Ag/CdS is also improved obviously. The results of cyclic experiments show that the composite photocatalysts have high stability. The outstanding photocatalytic and photothermal performance is attributed to the formation of tandem heterojunctions favoring the separation of charge carriers, the 3D hierarchical structure of Bi5O7I offering adequate surface active sites, and the SPR effect of Ag promoting the photothermal effect. These novel Bi5O7I/Ag/CdS tandem heterojunctions may provide a new insight into the synthesis of other photocatalysts with synergistic photocatalytic–photothermal effects.

Graphical abstract: Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Sep 2019, accepted on 18 Oct 2019 and first published on 05 Nov 2019


Article type: Paper
DOI: 10.1039/C9CY01945F
Catal. Sci. Technol., 2019, Advance Article

  •   Request permissions

    Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance

    K. Wang, Z. Xing, M. Du, S. Zhang, Z. Li, K. Pan and W. Zhou, Catal. Sci. Technol., 2019, Advance Article , DOI: 10.1039/C9CY01945F

Search articles by author

Spotlight

Advertisements