Jump to main content
Jump to site search


Synergistic additive-mediated CVD growth and chemical modification of 2D materials

Author affiliations

Abstract

Research on 2D materials has recently become one of the hottest topics that has attracted broad interdisciplinary attention. 2D materials offer fascinating platforms for fundamental science and technological explorations at the nanometer scale and molecular level, and exhibit diverse potential applications for future advanced nano-photonics and electronics. The chemical vapor deposition (CVD) technique has shown great promise for producing high-quality 2D materials with superior electro-optical performance. However, it is difficult to synthesize continuous single-crystal 2D materials with large domain sizes and good uniformity due to the low vapor pressure of their precursors. It has been observed that the addition of selected synergistic additives to the CVD process under mild conditions can result in uniformly large-area and highly crystalline monolayer 2D materials with exceptional optical/electrical properties. Moreover, the 2D material-based devices chemically modified by synergistic additives can achieve superior performances compared to those previously reported. In this review, we compare several typical synergistic additive-mediated CVD growth processes of 2D materials, as well as their superior properties, and provide some perspectives and challenges for the future of this emerging research field.

Graphical abstract: Synergistic additive-mediated CVD growth and chemical modification of 2D materials

Back to tab navigation

Publication details

The article was received on 20 Jul 2019 and first published on 14 Aug 2019


Article type: Review Article
DOI: 10.1039/C9CS00348G
Chem. Soc. Rev., 2019, Advance Article

  •   Request permissions

    Synergistic additive-mediated CVD growth and chemical modification of 2D materials

    J. Jiang, N. Li, J. Zou, X. Zhou, G. Eda, Q. Zhang, H. Zhang, L. Li, T. Zhai and A. T. S. Wee, Chem. Soc. Rev., 2019, Advance Article , DOI: 10.1039/C9CS00348G

Search articles by author

Spotlight

Advertisements