Jump to main content
Jump to site search


Nanoparticles' interactions with vasculature in diseases

Author affiliations

Abstract

The ever-growing use of inorganic nanoparticles (NPs) in biomedicine provides an exciting approach to develop novel imaging and drug delivery systems, owing to the ease with which these NPs can be functionalized to cater to various applications. In cancer therapeutics, nanomedicine generally relies on the enhanced permeability and retention (EPR) effect observed in tumour vasculature to deliver anti-cancer drugs across the endothelium. However, such a phenomenon is dependent on the tumour microenvironment and is not consistently observed in all tumour types, thereby limiting drug transport to the tumour site. On the other hand, there is a rise in utilizing inorganic NPs to intentionally induce endothelial leakiness, creating a window of opportunity to control drug delivery across the endothelium. While this active targeting approach creates a similar phenomenon compared to the EPR effect arising from tumour tissues, its drug delivery applications extend beyond cancer therapeutics and into other vascular-related diseases. In this review, we summarize the current findings of the EPR effect and assess its limitations in the context of anti-cancer drug delivery systems. While the EPR effect offers a possible route for drug passage, we further explore alternative uses of NPs to create controllable endothelial leakiness within short exposures, a phenomenon we coined as nanomaterial-induced endothelial leakiness (NanoEL). Furthermore, we discuss the main mechanistic features of the NanoEL effect that make it unique from conventionally established endothelial leakiness in homeostatic and pathologic conditions, as well as examine its potential applicability in vascular-related diseases, particularly cancer. Therefore, this new paradigm changes the way inorganic NPs are currently being used for biomedical applications.

Graphical abstract: Nanoparticles' interactions with vasculature in diseases

Back to tab navigation

Publication details

The article was received on 26 Jun 2019 and first published on 09 Sep 2019


Article type: Review Article
DOI: 10.1039/C9CS00309F
Chem. Soc. Rev., 2019, Advance Article

  •   Request permissions

    Nanoparticles' interactions with vasculature in diseases

    J. K. Tee, L. X. Yip, E. S. Tan, S. Santitewagun, A. Prasath, P. C. Ke, H. K. Ho and D. T. Leong, Chem. Soc. Rev., 2019, Advance Article , DOI: 10.1039/C9CS00309F

Search articles by author

Spotlight

Advertisements