Issue 16, 2019

Photoactive properties of supramolecular assembled short peptides

Abstract

Bioinspired nanostructures can be the ideal functional smart materials to bridge the fundamental biology, biomedicine and nanobiotechnology fields. Among them, short peptides are among the most preferred building blocks as they can self-assemble to form versatile supramolecular architectures displaying unique physical and chemical properties, including intriguing optical features. Herein, we discuss the progress made over the past few decades in the design and characterization of optical short peptide nanomaterials, focusing on their intrinsic photoluminescent and waveguiding performances, along with the diverse modulation strategies. We review the complicated optical properties and the advanced applications of photoactive short peptide self-assemblies, including photocatalysis, as well as photothermal and photodynamic therapy. The diverse advantages of photoactive short peptide self-assemblies, such as eco-friendliness, morphological and functional flexibility, and ease of preparation and modification, endow them with the capability to potentially serve as next-generation, bio-organic optical materials, allowing the bridging of the optics world and the nanobiotechnology field.

Graphical abstract: Photoactive properties of supramolecular assembled short peptides

Article information

Article type
Review Article
Submitted
12 Mar 2019
First published
25 Jun 2019

Chem. Soc. Rev., 2019,48, 4387-4400

Photoactive properties of supramolecular assembled short peptides

B. Sun, K. Tao, Y. Jia, X. Yan, Q. Zou, E. Gazit and J. Li, Chem. Soc. Rev., 2019, 48, 4387 DOI: 10.1039/C9CS00085B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements