Jump to main content
Jump to site search


Enhanced Wettability of Long Narrow Carbon Nanotubes in a Double-walled Hetero-structure: Unraveling the Effects of Boron Nitride Nanotube as the Exterior

Abstract

Studying the structure and dynamics of nano-confined water inside carbon nanotubes have consistently attracted the wide-spreading interests of researchers. In the present work, Molecular dynamics simulations indicated internal nonwetting behavior for the central region of the long and narrow single-wall carbon nanotube (5,5) (SWNT) and showed that continuously single-file water molecules are not formed through it. Unlike the SWNT, by adding boron nitride nanotube (6,6) as the outer wall to the SWNT, continuously long single-file water chain is formed through the double-walled carbon and boron nitride hetero-nanotube (DWHNT) and thorough internal wetting of DWHNT is observed. The position and the number of water molecules, electrostatic potential heatmap of the nanotube’s wall, the free energy profile of nano-confined water, and the number of hydrogen bonds between them confirmed aforementioned results and complete internal wetting of the DWHNT. After using boron nitride nanotube (6,6) as outer wall homogeneous electrostatic potential distribution in the DWHNT and increasing in the hydrophilic characteristics of the nano-channel wall are observed, bringing about gradually trapping of more water molecules through it. Finally, water molecules occupied the central region of the DWHNT and thoroughly single-file water chain is formed inside the nano-channel. Water dipole orientation inside the DWHNT and their radial distribution function asserted the occurrence of the liquid-solid quasi-phase transition of single-file water molecules confined inside the long and narrow carbon nanotube (5,5) under ambient condition.

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Sep 2019, accepted on 21 Nov 2019 and first published on 23 Nov 2019


Article type: Paper
DOI: 10.1039/C9CP04977K
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Enhanced Wettability of Long Narrow Carbon Nanotubes in a Double-walled Hetero-structure: Unraveling the Effects of Boron Nitride Nanotube as the Exterior

    M. Foroutan, V. Fadaei Naeini and M. Ebrahimi, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04977K

Search articles by author

Spotlight

Advertisements