Jump to main content
Jump to site search


Theoretical research on oxidation mechanism of doped carbon based catalysts for oxygen reduction reaction

Abstract

To understand the essential reasons of poor durability and rapid initial performance loss of heteroatoms doped graphene catalyst during electrochemical oxygen reduction reaction (ORR) process, it is necessary to explore the detailed mechanism of carbon active sites oxidation (COR) at different electrode potentials, as it may greatly influence the ORR activity. Herein, density functional theory (DFT) calculation is used to investigate all possible COR mechanism, including Direct-COR and Indirect-COR, on four typical doped-graphene, and understand the competition relation between COR and ORR from thermodynamic point of view. Our systematic calculations found that the Direct-COR is affected directly by the structural stability of doped-graphene relative to pure graphite, and the Indirect-COR can be accelerated largely by the ORR process due to the ORR intermediate, such as O and OOH. The competition relation between COR and ORR is mainly influenced by the interaction between the doped-graphene and reaction species, stability of doped-structure, ORR mechanism, and electrode potential. For COR, partial oxidation of doped-graphene is the dominant oxidation reaction compared to complete oxidation in ORR potential range. More importantly, both partial and complete oxidation of doped-graphene can remarkably depress the ORR activity. Then COR should be one of major contributors to the rapid initial performance loss of carbon based catalysts in the stability testing. Our results provide a comprehensive and deep understanding to the oxidation of carbon active sites on doped-graphene surface and guide the design of more robust doped-carbon based catalysts.

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Aug 2019, accepted on 30 Oct 2019 and first published on 05 Nov 2019


Article type: Paper
DOI: 10.1039/C9CP04691G
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Theoretical research on oxidation mechanism of doped carbon based catalysts for oxygen reduction reaction

    N. Yang, L. Peng, L. Li, J. Li and Z. Wei, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04691G

Search articles by author

Spotlight

Advertisements