Jump to main content
Jump to site search


Water Dissociation and Hydrogen Evolution on Fe-based Bulk Metallic Glasses Surface

Abstract

Fe-based bulk metallic glasses (BMGs) with a composition of Fe48Cr15Mo14C15B6Y2 has recently been reported with good applications for its excellent mechanical and chemical properties, showing excellent corrosion resistance, remarkable forming and processing ability, ultrahigh yield strength and greater elasticity. Here, we report on a new functional application for such Fe-based BMGs, which can exhibit better catalytic performance than the pristine Fe surface. The hydrogen evolution and dissociation processes of one and two H2O molecules on both BMG and pristine Fe surfaces are investigated using first-principles calculations. The energy barriers of the dissociation processes on the BMG surface are lower than those on the pristine Fe surface. Moreover, the structural configurations along the dissociation path during hydrogen evolution shows that it is easier for H2O molecules to dissociate into H2 on the surface of the BMG, rendering it to be a more active catalyst than the pristine Fe surface. Analyses on the electronic structures show further evidence that the BMG surface has a stronger ability to facilitate charge transfer at the interface and is more inclined to accept transferred charges, thereby promoting its catalytic activity. These findings shed light on understanding the functional applications of BMGs and are anticipated to be highly meaningful for further experimental investigations.

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Aug 2019, accepted on 04 Dec 2019 and first published on 04 Dec 2019


Article type: Paper
DOI: 10.1039/C9CP04672K
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Water Dissociation and Hydrogen Evolution on Fe-based Bulk Metallic Glasses Surface

    P. Sun, D. Kripalani and K. Zhou, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04672K

Search articles by author

Spotlight

Advertisements