Jump to main content
Jump to site search


Ab Initio Dynamics of Hydrogen Abstraction from N2H4 by OH radical: An RRKM-based Master Equation Study

Abstract

The detailed reaction mechanism of the N2H4 + OH reaction was reported for a wide range of condition (i.e., T = 200 – 3000 K & P = 1 – 7600 Torr) using CCSD(T)/CBS//M06-2X/6-311++G(3df, 2p) level and master equation/Rice–Ramsperger–Kassel–Marcus (ME/RRKM) rate model which includes corrections of the hindered internal rotor (HIR) and tunneling treatments. Our calculated rate constants are found in excellent agreement with the latest experimental data (Int. J. Chem. Kinet., 2001, 33, 354) which helps to resolve the discrepancy between the previous experimental and theoretical studies. The reaction mechanism was revealed in details as: (i) the H-abstraction channel is more thermodynamically favorable than the OH-substitution mechanism; (ii) non-Arrhenius behaviors and slightly positive pressure-dependence at low temperatures (T ≤ 500 K) of the rate coefficients are observed and (iii) the HIR treatment plays a substantial role in obtaining the reliable rate constants. Moreover, the performance of the molecular electronic structure methods (i.e., M06-2X, B3LYP, BH&HLYP and MP2) on the rate coefficient calculations was also discussed thoroughly in this work.

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Aug 2019, accepted on 02 Oct 2019 and first published on 03 Oct 2019


Article type: Paper
DOI: 10.1039/C9CP04585F
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Ab Initio Dynamics of Hydrogen Abstraction from N2H4 by OH radical: An RRKM-based Master Equation Study

    T. V.-T. Mai, H. T. Nguyen and L. K. Huynh, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04585F

Search articles by author

Spotlight

Advertisements