Jump to main content
Jump to site search


An Accurate Full-dimensional Permutationally Invariant Potential Energy Surface for the Interaction between H2O and CO

Abstract

The interaction between H2O and CO has been the subject of numerous experimental and theoretical investigations for a long time due to their important role in various environments, such as the atmosphere, combustion of hydrocarbons, and the interstellar medium. In this work, the first full-dimensional accurate potential energy surface (PES) was developed for the CO + H2O system based on ca. 102 000 points calculated at the level of explicitly correlated coupled–cluster method with singles, doubles, and perturbative triples excitations with the augmented correlation-consistent polarized triple zeta basis set (CCSD(T)-F12a/AVTZ) using the permutation invariant polynomial-neural network (PIP-NN) method. The geometries, energies, and frequencies of the two complex wells, CO-H2O and OC-H2O, and one transition state connecting them, as well as some interconversions between different conformers, are accurately reproduced by the PES, thanks to the small fitting error of only 1.08 meV. With full-dimensional degrees of freedom considered in the PES, we found that there exist strong dependences of the CO and OH bond length on the OC-H2O and CO-H2O interaction energies, which is not possible in reduced dimensional PESs. Finally, classical dynamics was carried out to study the energy transfer between H2O and CO with different initial vibrational energies in H2O and different vibrational states in CO.

Back to tab navigation

Publication details

The article was received on 08 Aug 2019, accepted on 06 Oct 2019 and first published on 07 Oct 2019


Article type: Paper
DOI: 10.1039/C9CP04405A
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    An Accurate Full-dimensional Permutationally Invariant Potential Energy Surface for the Interaction between H2O and CO

    Y. Liu and J. Li, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04405A

Search articles by author

Spotlight

Advertisements