Issue 38, 2019

Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations

Abstract

In the quest for identifying a graphene membrane for efficient water desalination, molecular dynamics simulations were performed for the pressure-driven flow of salty water across a multilayer graphene membrane. Water transport through the graphene membranes was tuned as a function of pore size, external pressure, and salt concentration. The results predicted that water permeability through the graphene channel (width of h = 7 Å) is two orders of magnitude higher than that through the conventional thin film membranes. The breaking of continuum assumption in graphene nanopores was captured by the appearance of a layered water structure and plug-like velocity profiles. Furthermore, the fluidity under nano confinement of graphene was examined in terms of shear viscosity, friction coefficient, and slip length, which were found to depend on the separation of the confining graphene walls and the external pressure. Furthermore, the MD results revealed that the macroscopic water flux through the graphene nanopores can be linked to the microscopic diffusion of water. The calculated viscosity and diffusion coefficient under the graphene pores did not follow the Stokes–Einstein relation, indicating the failure of the hydrodynamic theory. The confined state of water in the graphene pores was also explored via the translational density of states (TDOS) and entropy, which displayed a significant change in the translational entropy with change in the pore size and applied pressure and thus revealed the interconnectivity of the structure, dynamics, thermodynamics, and hydrodynamics of water in the graphene nanopores. Such a linking of the microscopic parameters with the macroscopic profiles provides direct evidence to the experiments of pressure-driven flow through the graphene membranes and might be helpful in examining the performance of graphene membranes for the factors that have large implications on their application in the reverse osmosis (RO) process and other biological channels.

Graphical abstract: Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations

Supplementary files

Article information

Article type
Paper
Submitted
06 Aug 2019
Accepted
05 Sep 2019
First published
05 Sep 2019

Phys. Chem. Chem. Phys., 2019,21, 21389-21406

Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations

P. Sahu and Sk. M. Ali, Phys. Chem. Chem. Phys., 2019, 21, 21389 DOI: 10.1039/C9CP04364K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements