Jump to main content
Jump to site search


Molecule-level graphdiyne coordinated transition metals as new class of bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions

Abstract

Single-atom catalysts (SACs) are highly desired for maximizing the efficiency of metal atom and can entail high selectivity and activity. Bifunctional catalysts enable higher performance and lower cost than two single-function catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Density functional theory calculations are used to design SACs, isolated transition metal anchored on graphdiyne (TM@GDY) for oxygen reduction (ORR) and oxygen evolution reactions (OER) in alkaline media. A dual-volcano plot is constructed to thoroughly describe and predict the catalytic activity toward ORR and OER processes on TM@GDY materials. The results demonstrate that GDY could provide a unique platform for synthesizing uniform SACs with high catalytic activity toward ORR and OER. The theoretical evaluations show that Ni@GDY and Pt@GDY catalysts possess comparable electrocatalytic activity for ORR and OER in alkaline media. The study not only gets deep insights into the catalytic activity of TM@ GDY, but also guides designing of GDY based SACs.

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Jul 2019, accepted on 12 Aug 2019 and first published on 15 Aug 2019


Article type: Paper
DOI: 10.1039/C9CP04068D
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Molecule-level graphdiyne coordinated transition metals as new class of bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions

    Z. Feng, R. Li, Y. Ma, Y. Li, D. Wei, Y. Tang and X. Dai, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP04068D

Search articles by author

Spotlight

Advertisements