Issue 36, 2019

Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane

Abstract

The polyamide (PA) layer on the surface of thin-film-composite reverse osmosis membranes is the core aspect of membrane-based desalination technology. In recent years, molecular dynamics simulations have been increasingly used to disclose the physicochemical properties of the PA layer. However, the currently reported all-atom PA layer models do not exhibit gradient variation of the structural properties of the layer, and they can only represent the innermost region of the PA layer. With the help of our recently developed universal toolkit “MembrFactory”, this paper reports a modeling method that can be used to construct a gradient crosslinking model and surface grafting model for the PA layer. A fully atomistic model of the PA layer was constructed, in which the degree of crosslinking (DC) was changed gradiently along the thickness direction. The structure of the PA layer model and the transport dynamics of the water molecules within it were systematically investigated using equilibrium molecular dynamics simulations. We found that the DC is the lowest and the water molecules have the strongest self-diffusion ability in the interfacial region of the PA layer model. Meanwhile, the pore size is distributed widely in the region. Subsequently, we modified the surface of the PA layer model with PEG coatings, and their coverage ratio was around 75%. The radial distribution function analysis showed that water molecules prefer to coordinate with the oxygen atoms in PEG. Furthermore, two contaminant molecules, 1-ethyl-2-methyl benzene and n-decane, were selected to investigate the antifouling properties of the PEG-modified PA layer. By analysing the trajectories of the pollutants and calculating the potential of the mean force, we found that the antifouling performance of a PEG-modified PA layer is not only related to the hydrophobicity and the size of the pollutant, but is also related to the coverage ratio of the PEG layer.

Graphical abstract: Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2019
Accepted
19 Aug 2019
First published
19 Aug 2019

Phys. Chem. Chem. Phys., 2019,21, 19995-20002

Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane

K. Li, S. Li, L. Liu, W. Huang, Y. Wang, C. Yu and Y. Zhou, Phys. Chem. Chem. Phys., 2019, 21, 19995 DOI: 10.1039/C9CP03798E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements