Issue 35, 2019

Structure and water attachment rates of ice in the atmosphere: role of nitrogen

Abstract

In this work we perform computer simulations of the ice surface in order to elucidate the role of nitrogen in the crystal growth rates and crystal habits of snow in the atmosphere. In pure water vapor at temperatures typical of ice crystal formation in cirrus clouds, we find that basal and primary prismatic facets exhibit a layer of premelted ice, with thickness in the subnanometer range. For partial pressures of 1 bar, well above the expected values in the troposphere, we find that only small amounts of nitrogen are adsorbed. The adsorption takes place onto the premelted surface, and hardly any nitrogen dissolves within the premelting film. The premelting film thickness does not change either. We quantify the resulting change of the ice/vapor surface tension to be in the hundredth of mN m−1 and find that the structure of the pristine ice surface is not changed in a significant manner. We perform a trajectory analysis of colliding water molecules, and find that the attachment rates from direct ballistic collision are very close to unity irrespective of the nitrogen pressure. Nitrogen is however at sufficient density to deflect a fraction of trajectories with smaller distance than the mean free path. Our results show explicitly that the reported differences in growth rates measured in pure water vapor and a controlled nitrogen atmosphere are not related to a significant disruption of the ice surface due to nitrogen adsorption. On the contrary, we show clearly from our trajectory analysis that nitrogen slows down the crystal growth rates due to collisions between water molecules with bulk nitrogen gas. This clarifies the long standing controversy of the role of inert gases on crystal growth rates and demonstrates their influence is solely related to the diffusion limited flow of water vapor across the gas phase.

Graphical abstract: Structure and water attachment rates of ice in the atmosphere: role of nitrogen

Supplementary files

Article information

Article type
Paper
Submitted
02 Jul 2019
Accepted
20 Aug 2019
First published
21 Aug 2019

Phys. Chem. Chem. Phys., 2019,21, 19594-19611

Structure and water attachment rates of ice in the atmosphere: role of nitrogen

P. Llombart, R. M. Bergua, E. G. Noya and L. G. MacDowell, Phys. Chem. Chem. Phys., 2019, 21, 19594 DOI: 10.1039/C9CP03728D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements