Jump to main content
Jump to site search

Issue 35, 2019
Previous Article Next Article

Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations

Author affiliations

Abstract

All-inorganic lead halide perovskites of various compositions have emerged as a prospective family of materials for light-emitting devices and photonic applications. However, a comprehensive study of their structural and electronic properties is still missing. Moreover, thin film fabrication of these perovskites comprising heterohalide anions by wet chemistry approaches also remains challenging. Here we fabricate high-quality CsPbBr3−xClx perovskite thin films using a wet chemical method accompanied by a chemical vapor anion exchange procedure, which allows rigorously studying their optical and structural properties at different compositions. Namely, we present both the numerical and experimental studies of the electronic properties of all-inorganic mixed-halide perovskites, showing their optical absorption, excitonic photoluminescence and exciton binding energy, phase, chemical composition, and band structure and the band gap evolution with a gradual change in x in CsPbBr3−xClx. The results reveal that as Cl ions substitute for Br ones in the perovskite crystal lattice the room-temperature phase does not change its orthorhombic symmetry, whereas the energy of the direct electronic transition from the valence to conduction band at the Γ-point increases nonlinearly. By using the experimentally derived nonlinear dependence it is easy to accurately predict the band gap for any CsPbBr3−xClx perovskite thin film consisting of grains with sizes beyond the quantum confinement regime.

Graphical abstract: Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations

Back to tab navigation

Supplementary files

Publication details

The article was received on 28 Jun 2019, accepted on 10 Aug 2019 and first published on 12 Aug 2019


Article type: Paper
DOI: 10.1039/C9CP03656C
Phys. Chem. Chem. Phys., 2019,21, 18930-18938

  •   Request permissions

    Electronic structure of CsPbBr3−xClx perovskites: synthesis, experimental characterization, and DFT simulations

    T. G. Liashenko, E. D. Cherotchenko, A. P. Pushkarev, V. Pakštas, A. Naujokaitis, S. A. Khubezhov, R. G. Polozkov, K. B. Agapev, A. A. Zakhidov, I. A. Shelykh and S. V. Makarov, Phys. Chem. Chem. Phys., 2019, 21, 18930
    DOI: 10.1039/C9CP03656C

Search articles by author

Spotlight

Advertisements