Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO2/dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase†
Abstract
Density functional theory modelling has been used to design Mo and W-based catalysts MoIII(tBu)(CO) and WIII(tBu)(CO) for CO2 hydrogenation and HCOOH dehydrogenation, which are bio-mimics of the active site of formate dehydrogenase. Based on DFT calculations, the molybdenum and tungsten based complexes are good catalysts in the +3 oxidation state for CO2 hydrogenation with free energies of 24.03 and 21.31 kcal mol−1, respectively. Such a low barrier indicates that our newly designed Mo and W-based complexes are very efficient for CO2 hydrogenation or HCOOH dehydrogenation catalysis. Overall, our computational results provide in depth insights that can serve as a great tool for the design and development of new and efficient molybdenum and tungsten based catalysts for CO2 hydrogenation or HCOOH dehydrogenation.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        