Jump to main content
Jump to site search

Nanotubols under H2O2 Exposure: Is It Possible to Poly-Hydroxylate Carbon Nanotubes?


We present a combined experimental and theoretical study dedicated to analyze the variations in the surface chemistry of low hydroxylated multiwalled carbon nanotubes (MWCNT’s), so called nanotubols, when exposed to H2O2 at high temperatures. The formation, surface density, and distribution of oxygen-containing functional groups are studied by infrared (IR) and X-ray photoelectron spectroscopies (XPS), as well as density functional theory (DFT) calculations performed on model functionalized CNT’s. After H2O2 exposure, the initial composition of –OH, –C=O, and –COOH substituents notably changes, being the carbonyl –C=O groups the ones that show the most notable increase on the carbon surface. Our highly oxidized MWCNT’s are partially soluble and form complex two-dimensional patterns at the air-water interface, as evidenced by Brewster angle microscopy. In a second step, these films can transferred to solid substrates to form porous multilayered carbon nanostructures with complex morphologies. In particular, and for the first time, we report the synthesis of “stadium-like” configurations made of CNT units whose formation and stability are a direct consequence of the self-assembly process occurring at the air/water interface. DFT calculations suggest the formation of molecular islands of oxygen-containing functional groups on the CNT surface. In addition, nudged elastic band studies reveal that, for these adsorbed phases, the reaction between two neighboring OH groups to produce atomic oxygen and a physisorbed water is characterized by energy barriers of ~0.2 eV. These small values could be at the origin of the sizable increase in chemisorbed single-oxygen species determined by XPS data after H2O2 treatment at 60 °C. The simulation of the C 1s binding energies (BE) allows us to more clearly identify the different oxygen-containing functionalities as well as to reveal how the local atomic environment affects their characteristic BE’s. Even if we were unable to polyhydroxylate our carbon nanotubes, we believe that H2O2-treated MWCNT’s are interesting materials for more complex post-functionalization procedures that might lead to the fabrication of novel carbon nanostructures.

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jun 2019, accepted on 10 Oct 2019 and first published on 11 Oct 2019

Article type: Paper
DOI: 10.1039/C9CP03148K
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Nanotubols under H2O2 Exposure: Is It Possible to Poly-Hydroxylate Carbon Nanotubes?

    J. Vicente-Santiago, J. Cornejo-Jacob, D. Valdez-Perez, J. Ruiz-Garcia and R. A. Guirado-Lopez, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP03148K

Search articles by author