Jump to main content
Jump to site search

Issue 35, 2019
Previous Article Next Article

Computational acceleration of prospective dopant discovery in cuprous iodide

Author affiliations

Abstract

The zinc blende (γ) phase of copper iodide holds the record hole conductivity for intrinsic transparent p-type semiconductors. In this work, we employ a high-throughput approach to systematically explore strategies for enhancing γ-CuI further by impurity incorporation. Our objectives are not only to find a practical approach to increase the hole conductivity in CuI thin films, but also to explore the possibility for ambivalent doping. In total 64 chemical elements were investigated as possible substitutionals on either the copper or the iodine site. All chalcogen elements were found to display acceptor character when substituting iodine, with sulfur and selenium significantly enhancing carrier concentrations produced by the native VCu defects under conditions most favorable for impurity incorporation. Furthermore, eight impurities suitable for n-type doping were discovered. Unfortunately, our work also reveals that donor doping is hindered by compensating native defects, making ambipolar doping unlikely. Finally, we investigated how the presence of impurities influences the optical properties. In the majority of the interesting cases, we found no deep states in the band-gap, showing that CuI remains transparent upon doping.

Graphical abstract: Computational acceleration of prospective dopant discovery in cuprous iodide

Back to tab navigation

Supplementary files

Article information


Submitted
13 May 2019
Accepted
12 Jul 2019
First published
22 Jul 2019

Phys. Chem. Chem. Phys., 2019,21, 18839-18849
Article type
Paper

Computational acceleration of prospective dopant discovery in cuprous iodide

M. Graužinytė, S. Botti, M. A. L. Marques, S. Goedecker and J. A. Flores-Livas, Phys. Chem. Chem. Phys., 2019, 21, 18839
DOI: 10.1039/C9CP02711D

Social activity

Search articles by author

Spotlight

Advertisements