Jump to main content
Jump to site search


A novel model for pyro-electro-catalytic hydrogen production in pure water

Author affiliations

Abstract

The pyro-electro-catalytic induced generation of hydrogen gas is an environmentally friendly and sustainable way to convert excess thermal energy into a storable form. The main idea is to make use of spontaneous polarization of pyroelectric materials that can be altered by temperature changes. Thus, surface potential changes and subsequent electron exchange with surrounding molecules can be induced. In this work, a fundamental model to describe the behavior of a thermally excited pyroelectric material in pure water is developed. The model combines the fields of pyroelectricity, electrochemistry, diffusion and semiconductor theory. After derivation, it was used to explore some basic questions on pyro-electro-catalytic hydrogen production and the accuracy was tested with experimental data. The results show that p/εr has to be balanced depending on the temperature gradient to maximize the hydrogen production. The validation of the experimental data revealed good agreement.

Graphical abstract: A novel model for pyro-electro-catalytic hydrogen production in pure water

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 May 2019, accepted on 19 Sep 2019 and first published on 19 Sep 2019


Article type: Paper
DOI: 10.1039/C9CP02510C
Phys. Chem. Chem. Phys., 2019, Advance Article

  •   Request permissions

    A novel model for pyro-electro-catalytic hydrogen production in pure water

    J. Schlechtweg, S. Raufeisen, M. Stelter and P. Braeutigam, Phys. Chem. Chem. Phys., 2019, Advance Article , DOI: 10.1039/C9CP02510C

Search articles by author

Spotlight

Advertisements