Issue 27, 2019

Structural correlations tailor conductive properties in polymerized ionic liquids

Abstract

Polymerized ionic liquids (PolyILs) are promising materials for applications in electrochemical devices spanning from fuel cells to capacitors and batteries. In principle, PolyILs have a competitive advantage over traditional electrolytes in being single ion conductors and thus enabling a transference number close to unity. Despite this perceived advantage, surprisingly low room temperature ionic conductivities measured in the lab raise an important fundamental question: how does the molecular structure mediate conductivity? In this work, wide-angle X-ray scattering (WAXS), vibrational sum frequency generation (vSFG), and density functional theory (DFT) calculations were used to study the bulk and interfacial structure of PolyILs, while broad band dielectric spectroscopy (BDS) was used to probe corresponding dynamics and conductive properties for a series of the PolyIL samples with tunable chemistries and structures. Our results reveal that the size of the mobile anions has a tremendous impact on chain packing in PolyILs that wasn’t addressed previously. Larger mobile ions tend to create a well-packed structure, while smaller ions frustrate chain packing. The magnitude of these changes and level of structural heterogeneity are shown to depend on the chemical functionality and flexibility of studied PolyILs. Furthermore, these experimental and computational results provide new insight into the correlation between conductivity and structure in PolyILs, suggesting that structural heterogeneity helps to reduce the activation energy for ionic conductivity in the glassy state.

Graphical abstract: Structural correlations tailor conductive properties in polymerized ionic liquids

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2019
Accepted
10 Jun 2019
First published
10 Jun 2019

Phys. Chem. Chem. Phys., 2019,21, 14775-14785

Author version available

Structural correlations tailor conductive properties in polymerized ionic liquids

B. Doughty, A. Genix, I. Popov, B. Li, S. Zhao, T. Saito, D. A. Lutterman, R. L. Sacci, B. G. Sumpter, Z. Wojnarowska and V. Bocharova, Phys. Chem. Chem. Phys., 2019, 21, 14775 DOI: 10.1039/C9CP02268F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements