Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(211) Reconstructed Surface


To provide guidelines to accelerate the Haber-Bosch (HB) process for synthesis of ammonia from hydrogen and nitrogen, we used Quantum Mechanics (QM) to determine the reaction mechanism and free energy reaction barriers under experimental reaction conditions (400°C and 20 atm) for all 10 important surface reactions on the Fe(211)R surface and used them in full kMC modeling for 30 minutes to attain steady state. We find that the stable surface under Haber-Bosch conditions is the missing row 2x1 reconstructed surface (211)R and that the Turn Over Frequency (TOF) is 18.7/sec per 2x2 surface site for 1.5 torr NH3 pressure, but changes to 3.5/sec for 1 atm, values close (within 6%) to the ones on Fe(111). The experimental ratio between (211) and (111) rates at low (undisclosed) NH3 pressure was reported to be 0.75. The excellent agreement with experiment on two very different surfaces and reaction mechanisms is a testament of the accuracy of QM modeling. In addition, our kinetic analysis indicates that Fe(211)R is more active than Fe(111) at high pressure, close to HB industrial conditions, and that (211)R is more abundant than (111) via a steady-state Wulff construction under HB conditions. Thus, at variance with common thinking, we advocate the Fe(211)R surface as the catalytically active phase of pure iron ammonia synthesis catalyst under HB industrial conditions.

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Mar 2019, accepted on 14 May 2019 and first published on 14 May 2019

Article type: Paper
DOI: 10.1039/C9CP01611B
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(211) Reconstructed Surface

    J. Fuller, A. Fortunelli, W. A. Goddard and Q. An, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP01611B

Search articles by author