Jump to main content
Jump to site search


High Bond Difference Parameters-Induced Low Thermal Transmission in Carbon allotropes with sp2 and sp3 Hybridization

Abstract

Carbon allotropes play an important role in thermal transmission field, while there are huge thermal differences in their thermal conductivities. In this work, thermal transmission in three novel carbon allotropes with sp2 and sp3 hybridization has been studied, including T6-carbon, T10 and 3D-C5 by using non-equilibrium molecular dynamic simulations and phonon kinetic theory. Graphene and diamond with standard sp2 and sp3 hybridization, respectively, are also examined for comparison. Our results indicate that thermal conductivities of T6-carbon, T10 and 3D-C5 at room temperature are much lower than that of diamond and graphene. Phonon kinetic theory analysis shows that the lower thermal conductivity of T6-carbon, T10 and 3D-C5 is caused by the combination action of their reduced phonon group velocities and relaxation time. Moreover, bond difference parameter has been proposed to describe the relationship between bond structures and thermal conductivity in carbon allotropes, which presents a new and convenient method for in-depth understanding the thermal conductivity of carbon allotropes.

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Feb 2019, accepted on 11 May 2019 and first published on 13 May 2019


Article type: Paper
DOI: 10.1039/C9CP01029G
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    High Bond Difference Parameters-Induced Low Thermal Transmission in Carbon allotropes with sp2 and sp3 Hybridization

    Z. Feng, H. Dong, S. Ju, B. Wen, Y. Zhang and R. Melnik, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP01029G

Search articles by author

Spotlight

Advertisements