Customizing topographical templates for aperiodic nanostructures of block copolymers via inverse design†
Abstract
The limited complexity of self-assembled nanostructures of block copolymers seriously impedes their potential utility in the semiconductor industry. Therefore, the customizability of complex nanostructures has been a long-standing goal for the utilization of directed self-assembly in nanolithography. Herein, we integrated an advanced inverse design algorithm with a well-developed theoretical model to deduce inverse solutions of topographical templates to direct the self-assembly of block copolymers into reproducible target structures. The deduced templates were optimized by finely tuning the input parameters of the inverse design algorithm and through symmetric operation as well as nanopost elimination. More importantly, our developed algorithm has the capability to search inverse solutions of topographical templates for aperiodic nanostructures over exceptionally large areas. These results reveal design rules for guiding templates for the device-oriented nanostructures of block copolymers with prospective applications in nanolithography.
- This article is part of the themed collection: 2019 PCCP HOT Articles