Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Dysprosium-doped iron oxide nanoparticles boosting spin-spin relaxation: computational and experimental study


Early diagnosis of diseases by contrast-enhanced magnetic resonance imaging (MRI) using iron oxide superparamagnetic nanoparticles (IOSNPs) has been extensively investigated due to the good biocompatibility of modified IOSNPs. However, the low magnetic sensitivity of IOSNPs still inflicts a certain limitation on their application further. In this study, we employed the first-principle calculation based on spin-polarized density functional theory (SDFT) to find the optimal dysprosium-doped scheme for improving the magnetic sensitivity of IOSNPs. Elicited from the optimal doping scheme, we synthesized a sort of ultrasmall γ-iron oxide superparamagnetic nanoparticles by a special phase transfer-coprecipitation method. The appropriately Dy-doped γ-IOSNPs coated with short-chain polyethylene glycol are small in hydrodynamic size and highly dispersed with effectively improved superparamagnetism for enhancing T2-weighted MRI relaxivity, which is consistent well with the SDFT prediction. The measured spin-spin relaxivity r2 is 123.2 s-1 mM-1, nearly doubling that of the pure γ-IOSNPs (67.8 s-1 mM-1) and substantially surpassing that of both clinically-approved T2 contrast agent Feridex and Resivist. The low dysprosium doping does not induce notable nanotoxicity for IOSNPs, but contributes sufficiently to their high relaxation performance instead, which endues the Dy-doped γ-IOSNPs with high potential as a better T2-weighted MRI contrast media. Both method and the nanomagnets reported in this study are expected to be of illumination to those researchers on designing and preparing high-performance MRI contrast agents as well as computational materials.

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Jan 2019, accepted on 13 May 2019 and first published on 14 May 2019

Article type: Paper
DOI: 10.1039/C9CP00463G
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    Dysprosium-doped iron oxide nanoparticles boosting spin-spin relaxation: computational and experimental study

    J. Yin, F. Xu, H. Qu, C. Li, S. Liu, L. Liu and Y. Shao, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP00463G

Search articles by author