Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



In situ, operando studies on size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based x-ray techniques

Abstract

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of the support were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in-situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and electronic state of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2,γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. in-situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and electronic state of catalysts are strongly influenced by support materials.

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Jan 2019, accepted on 02 May 2019 and first published on 15 May 2019


Article type: Paper
DOI: 10.1039/C9CP00347A
Phys. Chem. Chem. Phys., 2019, Accepted Manuscript

  •   Request permissions

    In situ, operando studies on size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based x-ray techniques

    S. Lee, S. Lee, D. Gerceker, M. Kumbhalkar, K. M. Wiaderek, M. Ball, M. Mavrikakis, J. Dumesic and R. E. Winans, Phys. Chem. Chem. Phys., 2019, Accepted Manuscript , DOI: 10.1039/C9CP00347A

Search articles by author

Spotlight

Advertisements