Jump to main content
Jump to site search

Issue 14, 2019
Previous Article Next Article

Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters

Author affiliations

Abstract

Iodide–nucleobase (I·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I·N clusters, including iodide–uracil (I·U), iodide–thymine (I·T), iodide–uracil–water (I·U·H2O), and iodide–adenine (I·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.

Graphical abstract: Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters

Back to tab navigation

Article information


Submitted
25 Dec 2018
Accepted
25 Feb 2019
First published
25 Feb 2019

Phys. Chem. Chem. Phys., 2019,21, 7239-7255
Article type
Perspective
Author version available

Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide–nucleobase clusters

A. Kunin and D. M. Neumark, Phys. Chem. Chem. Phys., 2019, 21, 7239
DOI: 10.1039/C8CP07831A

Social activity

Search articles by author

Spotlight

Advertisements