Issue 12, 2019

Theoretical studies of hydrogen abstraction from H2X and CH3XH (X = O, S) by trichloromethyl radicals

Abstract

We have theoretically investigated the hydrogen abstraction reactions of H2O, H2S, CH3OH, and CH3SH by the CCl3 radical, which is of interest in atmospheric chemistry research. In this study, mechanistic and kinetic analyses for the title reactions have been performed at the W1 and the CCSD(T)/cc-pVTZ//M06-2X/cc-pVTZ level. Standard Gibbs free energies for all reaction channels at the W1 level with ZPE corrections were also calculated. Intrinsic Reaction Coordinate (IRC) calculations were performed to verify the connectivity of all the transition states with the reactants and products. All rate coefficients are computed by conventional transition state theory (CTST) with the zero-curvature tunneling (ZCT) and also Wigner's tunneling (W) correction in the temperature range from 200 K to 2000 K. The rate coefficients for each reaction channel are also evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) in the same temperature range. Three-parameter Arrhenius expressions have been obtained by fitting to the computed rate coefficients of all abstraction channels between 200 and 2000 K. The branching ratios for these reactions have been determined. This study provides the first theoretical and kinetic determination of the CCl3 rate coefficient for reactions with H2O, H2S, CH3OH, and CH3SH over a large temperature range.

Graphical abstract: Theoretical studies of hydrogen abstraction from H2X and CH3XH (X = O, S) by trichloromethyl radicals

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2018
Accepted
26 Feb 2019
First published
27 Feb 2019

Phys. Chem. Chem. Phys., 2019,21, 6525-6534

Theoretical studies of hydrogen abstraction from H2X and CH3XH (X = O, S) by trichloromethyl radicals

J. Pal and R. Subramanian, Phys. Chem. Chem. Phys., 2019, 21, 6525 DOI: 10.1039/C8CP07677D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements