Jump to main content
Jump to site search


Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

Author affiliations

Abstract

The Si 1s−1, Si 2s−1, and Si 2p−1 photoelectron spectra of the SiX4 molecules with X = F, Cl, Br, CH3 were measured. From these spectra the Si 1s−1 and Si 2s−1 lifetime broadenings were determined, revealing a significantly larger value for the Si 2s−1 core hole of SiF4 than for the same core hole of the other molecules of the sequence. This finding is in line with the results of the Si 2p−1 core holes of a number of SiX4 molecules, with an exceptionally large broadening for SiF4. For the Si 2s−1 core hole of SiF4 the difference to the other SiX4 molecules can be explained in terms of Interatomic Coulomb Decay (ICD)-like processes. For the Si 2p−1 core hole of SiF4 the estimated values for the sum of the Intraatomic Auger Electron Decay (IAED) and ICD-like processes are too small to explain the observed linewidth. However, the results of the given discussion render for SiF4 significant contributions from Electron Transfer Mediated Decay (ETMD)-like processes at least plausible. On the grounds of our results, some more molecular systems in which similar processes can be observed are identified.

Graphical abstract: Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

Back to tab navigation

Publication details

The article was received on 30 Nov 2018, accepted on 29 Mar 2019 and first published on 01 Apr 2019


Article type: Paper
DOI: 10.1039/C8CP07369D
Citation: Phys. Chem. Chem. Phys., 2019, Advance Article

  •   Request permissions

    Si 1s−1, 2s−1 and 2p−1 lifetime broadening of SiX4 (X = F, Cl, Br, CH3) molecules: SiF4 anomalous behaviour reassessed

    R. Püttner, T. Marchenko, R. Guillemin, L. Journel, G. Goldsztejn, D. Céolin, O. Takahashi, K. Ueda, A. F. Lago, M. N. Piancastelli and M. Simon, Phys. Chem. Chem. Phys., 2019, Advance Article , DOI: 10.1039/C8CP07369D

Search articles by author

Spotlight

Advertisements