Jump to main content
Jump to site search


New insights into the dissociation dynamics of methylated anilines

Author affiliations

Abstract

Aniline, an important model system for biological chromophores, undergoes ultrafast H-atom loss upon absorption of an ultraviolet photon. By varying the number and position of methyl substituents on both the aromatic ring and amine functional group, we explore the ultrafast production of photofragments as a function of molecular structure. Both N-methyl aniline and 3,5-dimethyl aniline show altered H-atom loss behaviour compared to aniline, while no evidence for CH3 loss was found from either N-methyl aniline or N,N-dimethyl aniline. With the addition of time-resolved photoelectron spectroscopy, the photofragment appearance times are matched to excited state relaxation pathways. Evidence for a sequential excited state relaxation mechanism, potentially involving a valence-to-Rydberg decay mechanism, will be presented. Such a global, bottom-up approach to molecular photochemistry is crucial to understanding the dissociative pathways and excited state decay mechanisms of biomolecule photoprotection in nature.

Graphical abstract: New insights into the dissociation dynamics of methylated anilines

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Nov 2018, accepted on 07 Feb 2019 and first published on 12 Mar 2019


Article type: Paper
DOI: 10.1039/C8CP07061J
Citation: Phys. Chem. Chem. Phys., 2019, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    New insights into the dissociation dynamics of methylated anilines

    N. C. Cole-Filipiak and V. G. Stavros, Phys. Chem. Chem. Phys., 2019, Advance Article , DOI: 10.1039/C8CP07061J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements