Jump to main content
Jump to site search


Non-covalent complexes of the peptide fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the gas-phase. Photodissociative cross-linking, Born–Oppenheimer molecular dynamics, and ab initio computational binding study

Author affiliations

Abstract

Non-covalent complexes of the short amyloid peptide motif Gly-Asn-Asn-Gln-Gln-Asn-Tyr (GNNQQNY) with peptide counterparts that were tagged with a diazirine ring at the N-termini (*GNNQQNY) were generated as singly charged ions in the gas phase. Specific laser photodissociation (UVPD) of the diazirine tag in the gas-phase complexes at 355 nm generated transient carbene intermediates that underwent covalent cross-linking with the target GNNQQNY peptide. The crosslinking yields ranged between 0.8 and 4.5%, depending on the combinations of peptide C-terminal amides and carboxylates. The covalent complexes were analyzed by collision-induced dissociation tandem mass spectrometry (CID-MS3), providing distributions of cross-links at the target peptide amino acid residues. A general preference for cross-linking at the target peptide Gln-4-Gln-5-Asn-6-Tyr-7 segment was observed. Born–Oppenheimer molecular dynamics calculations were used to obtain 100 ps trajectories for nine lowest free-energy conformers identified by ωB97X-D/6-31+G(d,p) gradient geometry optimizations. The trajectories were analyzed for close contacts between the incipient carbene atom and the X–H bonds in the target peptide. The close-contact analysis pointed to the Gln-5 and Tyr-7 residues as the most likely sites of cross-linking, consistent with the experimental CID-MS3 results. Non-covalent binding in the amide complexes was evaluated by DFT calculations of structures and energies. Although antiparallel arrangements of the GNNQQNY and *GNNQQNY peptides were favored in low-energy gas-phase and solvated complexes, the conformations and peptide–peptide interface surfaces were found to differ from the secondary structure of the dry interface in GNNQQNY motifs of amyloid aggregates.

Graphical abstract: Non-covalent complexes of the peptide fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the gas-phase. Photodissociative cross-linking, Born–Oppenheimer molecular dynamics, and ab initio computational binding study

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Nov 2018, accepted on 02 Jan 2019 and first published on 08 Jan 2019


Article type: Paper
DOI: 10.1039/C8CP06893C
Citation: Phys. Chem. Chem. Phys., 2019, Advance Article
  •   Request permissions

    Non-covalent complexes of the peptide fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the gas-phase. Photodissociative cross-linking, Born–Oppenheimer molecular dynamics, and ab initio computational binding study

    S. R. Huang, Y. Liu and F. Tureček, Phys. Chem. Chem. Phys., 2019, Advance Article , DOI: 10.1039/C8CP06893C

Search articles by author

Spotlight

Advertisements