Issue 2, 2019

Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni)

Abstract

Metal–organic frameworks (MOFs) are coordination networks with organic ligands containing potential voids. Some MOFs show pronounced structural flexibility that may result in closing and re-opening these pores. Here, we show that collective flexibility in a MOF-DUT-8(Ni) – is controlled by conformational isomerism. DUT-8(Ni), a pillared-layer MOF with Ni2 paddle-wheels, dabco pillars and naphthalene dicarboxylate (ndc) linkers, can crystallize in many conformational isomers that depend on the orientation of the non-linear ndc linkers with respect to each other. While the open form is compatible with several of these conformations, only one of them, with alternating linker orientations, is stable as the closed form. We show, by means of first principles calculations, that in the stable closed form, the appreciable lattice strain is compensated by London-dispersion forces between the ndc linkers that arrange with maximum overlap in a stacking order similar to the stacking in graphite. We substantiate these results by well-tempered metadynamics calculations on the DFT-based Born–Oppenheimer potential energy surface, by refined X-ray diffraction data and by nitrogen adsorption data obtained by experiment and grand-canonical Monte-Carlo simulations based on the DFT-optimized and PXRD-derived geometries. While the reported origin of flexibility cannot be generalized to all flexible MOFs, it offers a rational design concept of folding mechanisms in switchable MOFs by exploitation of the stabilization effect of linker stacking in the closed form.

Graphical abstract: Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni)

Supplementary files

Article information

Article type
Paper
Submitted
23 Oct 2018
Accepted
22 Nov 2018
First published
22 Nov 2018

Phys. Chem. Chem. Phys., 2019,21, 674-680

Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni)

P. St. Petkov, V. Bon, C. L. Hobday, A. B. Kuc, P. Melix, S. Kaskel, T. Düren and T. Heine, Phys. Chem. Chem. Phys., 2019, 21, 674 DOI: 10.1039/C8CP06600K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements