Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2019
Previous Article Next Article

Tuning the shape anisotropy of loosely bound colloid-like ionic clusters in solution

Author affiliations

Abstract

We characterize the influence of the ionic ratio on the dynamic self-assembly process involving a macrocyclic tetraimidazolium molecular box and small dianionic salts into highly defined, colloid-like ionic clusters in solution, called ionoids. Based on our studies utilizing dynamic light scattering (DLS) and continuous wave electron paramagnetic resonance (CW EPR) spectroscopy, we determine a region of privileged ionic ratios, which allow the formation of monodisperse, spheroidal structures of loosely bound ions in solution with adjustable (i) hydrodynamic radii between 6 nm and 12 nm and (ii) shape anisotropy. Inspired by Hertzsprung–Russell diagrams (HRDs) used in astrophysics to describe the fate of stars, we construct ionoid evolution diagrams (IEDs). IEDs are essential for grasping and describing the highly complex temporal development of these dynamically self-assembled structures in solution from the level of the individual ionic building blocks to stable clusters with a minimum lifetime of months, and thus aid in crafting future globular ionoids and anisotropic ionic clusters.

Graphical abstract: Tuning the shape anisotropy of loosely bound colloid-like ionic clusters in solution

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Oct 2018, accepted on 01 Dec 2018 and first published on 07 Jan 2019


Article type: Paper
DOI: 10.1039/C8CP06558F
Citation: Phys. Chem. Chem. Phys., 2019,21, 1152-1159
  • Open access: Creative Commons BY license
  •   Request permissions

    Tuning the shape anisotropy of loosely bound colloid-like ionic clusters in solution

    J. Eisermann and D. Hinderberger, Phys. Chem. Chem. Phys., 2019, 21, 1152
    DOI: 10.1039/C8CP06558F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements