Issue 1, 2019

Experimental quantification of electron spectral-diffusion under static DNP conditions

Abstract

Dynamic Nuclear Polarization (DNP) is an efficient technique for enhancing NMR signals by utilizing the large polarization of electron spins to polarize nuclei. The mechanistic details of the polarization transfer process involve the depolarization of the electrons resulting from microwave (MW) irradiation (saturation), as well as electron–electron cross-relaxation occurring during the DNP experiment. Recently, electron–electron double resonance (ELDOR) experiments have been performed under DNP conditions to map the depolarization profile along the EPR spectrum as a consequence of spectral diffusion. A phenomenological model referred to as the eSD model was developed earlier to describe the spectral diffusion process and thus reproduce the experimental results of electron depolarization. This model has recently been supported by quantum mechanical calculations on a small dipolar coupled electron spin system, experiencing dipolar interaction based cross-relaxation. In the present study, we performed a series of ELDOR measurements on a solid glassy solution of TEMPOL radicals in an effort to substantiate the eSD model and test its predictability in terms of electron depolarization profiles, in the steady-state and under non-equilibrium conditions. The crucial empirical parameter in this model is ΛeSD, which reflects the polarization exchange rate among the electron spins. Here, we explore further the physical basis of this parameter by analyzing the ELDOR spectra measured in the temperature range of 3–20 K and radical concentrations of 20–40 mM. Simulations using the eSD model were carried out to determine the dependence of ΛeSD on temperature and concentration. We found that for the samples studied, ΛeSD is temperature independent. It, however, increases with a power of ∼2.6 of the concentration of TEMPOL, which is proportional to the average electron–electron dipolar interaction strength in the sample.

Graphical abstract: Experimental quantification of electron spectral-diffusion under static DNP conditions

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2018
Accepted
23 Nov 2018
First published
28 Nov 2018

Phys. Chem. Chem. Phys., 2019,21, 478-489

Experimental quantification of electron spectral-diffusion under static DNP conditions

K. Kundu, M. R. Cohen, A. Feintuch, D. Goldfarb and S. Vega, Phys. Chem. Chem. Phys., 2019, 21, 478 DOI: 10.1039/C8CP05930F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements