Issue 8, 2019

Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification

Abstract

A comprehensive investigation on local structures in iron melts and their role in nucleation under various cooling rates was performed by means of large-scale molecular dynamics simulations. The embedded atoms method (EAM) was adopted to describe the interactions between iron atoms. Connections between short-range order (SRO), medium-range order (MRO), and crystalline nucleation from iron melts were constructed using several structural analysis techniques, including the radial distribution function, common neighbor analysis method, the Voronoi tessellation, and bond order analysis. The simulation results showed that abundant types of atomic clusters with SRO, mainly including the icosahedral-like (ICO-like) and fcc-like clusters, were predominant in undercooled iron melts. The obtained microstructures were determined by the competition between the ICO-like and crystal-like configurations. There existed a critical cooling rate, below which the fcc-like configurations gain the advantage upon cooling and where crystallization could take place; otherwise, the ICO-like configurations are favored and the glass phases could be obtained. Furthermore, it was proved that the crystal nucleation could be divided into three stages: first, a fluctuation and competition between crystal-like and ICO-like clusters in undercooled melts; second, the formation and growth of MRO clusters via the transformation of atomic configurations from ICO-like to crystal-like; finally, the nucleation of bcc nuclei from the core of steady MRO clusters. This process agrees with the Ostwald's step rule and the findings from other investigations. Based on the analysis of the compositional origin of MRO clusters, we further found that the MRO clusters were mainly composed of fcc-like instead of ICO-like configurations, indicating a negative role of ICO-like configurations in crystal nucleation.

Graphical abstract: Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification

Article information

Article type
Paper
Submitted
06 Sep 2018
Accepted
19 Nov 2018
First published
20 Nov 2018

Phys. Chem. Chem. Phys., 2019,21, 4122-4135

Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification

Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou and Z. Wang, Phys. Chem. Chem. Phys., 2019, 21, 4122 DOI: 10.1039/C8CP05654D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements