Jump to main content
Jump to site search


Chloride binding capacity of LDHs with various divalent cations and divalent to trivalent cation ratios in different solutions

Abstract

Layered double hydroxides (LDHs) have shown great potential to prevent chloride penetration into cementitious materials. This paper intends to investigate the effect of divalent cation type and divalent to trivalent metal ion ratio of LDHs on their chloride binding capacity. Different of M2+(Mg, Ca, Zn)-Al-NO3 LDHs were prepared by hydrothermal synthesis method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential scanning calorimetry (TG-DSC) were adopted to characterize the synthesized LDHs. In addition, chloride binding capacity of LDHs were measured by equilibrium isotherm of chloride binding. These results indicated that Zn-Al-NO3 LDH (Z-LDH) exhibited the largest chloride binding capacity because of its greatest basal spacing comparing with Mg-Al-NO3 LDH (M-LDH) and Ca-Al-NO3 LDH (C-LDH). The chloride binding capacity of Z-LDH increased with the decrement of divalent to trivalent metal ion ratio ranging from 2 to 4. Due to the competitive binding of anions, the chloride binding capacity of LDHs in simulated concrete pore (SCP) solution was slightly lower than that in deionized water. However, simulated carbonation of SCP solution resulted in considerable desorption of chloride. Special attention should be paid on the desorption of chlorides caused by carbonation if LDHs are used in cementitious materials to prevent chlorides penetration.

Back to tab navigation

Publication details

The article was received on 21 Aug 2019, accepted on 30 Sep 2019 and first published on 30 Sep 2019


Article type: Paper
DOI: 10.1039/C9CE01322A
CrystEngComm, 2019, Accepted Manuscript

  •   Request permissions

    Chloride binding capacity of LDHs with various divalent cations and divalent to trivalent cation ratios in different solutions

    M. Chen, F. Wu, L. YU, Y. Cai, H. Chen and M. Zhang, CrystEngComm, 2019, Accepted Manuscript , DOI: 10.1039/C9CE01322A

Search articles by author

Spotlight

Advertisements