Jump to main content
Jump to site search


Stacking interactions between ruthenium p-cymene complexes. Combined crystallographic and density functional study.

Abstract

The Cambridge Structural Database search for stacking interactions between p-cymene (1-methyl-4-isopropylbenzene) ligands of transition metal complexes revealed three preferred interaction geometries, all with antiparallel orientation. The most frequent one involves both stacking of aromatic rings and C-H/π interactions of methyl substituents with aromatic rings, while the second most frequent has stacking of aromatic rings and C-H/π interactions of methyl groups of isopropyl substituents with aromatic rings. The results of CSD search are in agreement with DFT calculations of interaction energies, since all the preferred CSD geometries correspond to minima on potential energy curves. The strongest calculated interaction between p-cymene ligands of model complexes [Ru(p-cym)Cl2(NH3)], with B97-D2/def2-TZVP interaction energy of -7.56 kcal/mol, corresponds to the most frequent geometry found in crystal structures, that contain mostly ruthenium complexes. This is significantly stronger than interaction between benzene ligands of [Ru(benzene)Cl2(NH3)] complexes (-3.93 kcal/mol), revealing that substituents increase interaction strength substantially. All interaction geometries and their relative strengths are in agreement with electrostatic potential of the monomer complex.

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Aug 2019, accepted on 09 Oct 2019 and first published on 10 Oct 2019


Article type: Paper
DOI: 10.1039/C9CE01290G
CrystEngComm, 2019, Accepted Manuscript

  •   Request permissions

    Stacking interactions between ruthenium p-cymene complexes. Combined crystallographic and density functional study.

    D. P. Malenov and S. D. Zaric, CrystEngComm, 2019, Accepted Manuscript , DOI: 10.1039/C9CE01290G

Search articles by author

Spotlight

Advertisements