Issue 23, 2019

Towards the synthesis of mixed oxides with controlled stoichiometry from Prussian blue analogues

Abstract

Controlling the synthesis of mixed oxides is of great interest since their stoichiometry influences the properties. We present here the transformation of the Co4[Fe(CN)6]2.7 Prussian blue analogue (PBA) into the mixed Co1.8Fe1.2O4 spinel oxide, with a detailed characterization of the final phase (obtained by calcination in air at 900 °C for 2 hours) and an emphasis on the calcination process by TDA/TGA, X-ray diffraction, (high-resolution) TEM and energy-filtered TEM. Single-crystalline particles with a homogeneous distribution of Fe and Co ions within each particle are observed, with the same Co : Fe ratio as in the PBA. The calcination mechanism is a 2-step transformation, with first the elimination of water molecules and then the cyanide decomposition. XRD and TEM at intermediate temperatures additionally show the occurrence of a phase separation between 500 °C and 850 °C before the formation of the single final phase. We demonstrate also through the calcination of intermediate PBAs between Co4[Fe(CN)6]2.7 and Co4[Co(CN)6]2.7 that this synthesis route leads to the perfect control of the oxide stoichiometry through control of the PBA. The versatility of this synthesis route is finally illustrated through the successful synthesis of Co1.8Fe1.2O4 nanoparticles (diameter ∼5 nm) from PBA nanoparticles confined within the pores of a mesoporous silica monolith.

Graphical abstract: Towards the synthesis of mixed oxides with controlled stoichiometry from Prussian blue analogues

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2019
Accepted
08 May 2019
First published
13 May 2019

CrystEngComm, 2019,21, 3634-3643

Towards the synthesis of mixed oxides with controlled stoichiometry from Prussian blue analogues

V. Trannoy, A. Bordage, J. Dezalay, R. Saint-Martin, E. Rivière, P. Beaunier, C. Baumier, C. La Fontaine, G. Fornasieri and A. Bleuzen, CrystEngComm, 2019, 21, 3634 DOI: 10.1039/C9CE00427K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements